Presentation of

“Bugs as deviant behavior: A general
approach to inferring errors in

systems code”

Lucas Panjer
October 12, 2006

Problem

—inding programming errors Is difficult

Defining the rules that describe
programming errors is difficult

Solution

Attempt to automatically find good
programming error rules

Detect flaws in belief sets

Assume that the majority Is correct and
minority Is likely to be incorrect

Process code for rules, flag instances
that don’t match the rules

Method

Define a set of rule templates

Parse code to find instances that fit the
rules, developing rules dynamically

Order the output based on relevance
Evaluate the identified errors

Consistency

e Checker defined by

. Rule Template
. Valid slot instances
. Code actions that imply beliefs
. Rules for belief combination, contradiction
. Rules for belief propagation
Examples:
* function <f> must be checked for failure
* In context <x>, do after <a>

. DeC\I/eIop a belief set as you work through a piece of
code

 When you find a contradiction you mark it as an error

Statistical analysis

Example:
— <a> MAY be paired with

Observe a behaviour that
happens frequently

Mark as a possible error
when it doesn’t happen
(with confidence rating)

Filter results based on
system specific rules

SEY@Eogoen N

lock 1;
int a, b;

woid fool) {

}

lock(1);

a=a+b;
unlock{l);
b=h+ 1;

void bar() {

.)

lock(1l};
a=a+1;
unlock({l};

: }
: woid baz() {

a=a+l];
unlock({l);
bwb - 1;
a=a/5;

Ff Loack
// Varimbles potentially
f/ protected by 1

f/ Enter critical sectionm
ff MAY: ;b protected by 1

f/f Exit ecritical section
ff MUST: b not protectad by 1

/f MAT: a protected by 1

// MAY: m protected by 1

/f MUST: b mot protected by 1
// MUST: a net protected by L

Implementation

 metal a high level state machine
language for compiler extensions

e Creates xgcc extensions
e Tested against OpenBSD, Linux

Usage

e Four case studies

Internal Null Consistency

Check-then-use

— A pointer thought to be null is dereferenced
e Use-then-check

— A pointer is dereferenced the checked to be null
 Redundant checks

— A Pointer known to be (!)null checked to be (H)null

f* 2.4.1:drivers/isdn/avabl/capldrv.c: o/ .
: 11 (card == NULL) { _Checker Sus False
printk(KERN_ERR "capldrv-Y%d: ... ¥d!\n", check-then-use 79 26
card=>contrar, id): use-then-check 102 4
. _redundant-checks 24 10

Table 3: Results of running the internal null checker on
Linux 2.4.7.

Security Backdoors

e Looks for unsafe dereferencing of pointers in

system code

* Need to define a significant number of routine
and variable names to ignore to suppress false

positives

0S
OpenBSD 2.8
Linux 2.4.1

Errors

Linux 2.3.99 5

False

n/a

Applied
1645
4905

n/a

Inferring Fallure

Looks for unchecked or incorrectly checked
routine failures

Count number of times the function was
checked In a certain manner

Count minority as a errors
Rank

Version Bug
241 524102
OpenB5SD 27 + 14
Total 1495

Deriving Temporal Rules

~reed memory should not be used
f a function arg Is not used after the call,
orogrammer may believe it is deallocated

— Check all function argument pairs where function
contains a dealloc function “free”, “dealloc”, etc

— Collect stats on number of times checked vs failed
* Linux kernel checking found 23 free errors 11
false positives

/o fofproc/genaric.c:proc_symlink »/f
ent=>rdata = kmalloc(...)};
if (leant->data) {
kfrae{ent):
goto out;
}
puk:
raturn ant;

Contributions

e Finds bugs without knowing the correctness
rules of the system.

* Previous work manually specified rules to
check against a system. This work improves

by:
— Templating the rules (Consistency)
— Automatically finding rules (Statistical)

e Found lots of errors in real systems code.
Resulted in many kernel patches.

Positive

Lets the rules be highly targeted to the code
IN question

Automation far superior to human code
review for error cases

Could translate easily into error checking In
compilers

Allow domain specific knowledge to be
applied at a compiler level.

Allows checking of non-runnable code
(drivers)

Negative

Must know what classes of errors to check
Need to write compiler extensions
Relatively high false positive rate

Often need to add domain specific knowledge
to suppress false positives and assist ranking
algorithms

Previous work has impacted current study

