
Presentation of
“Bugs as deviant behavior: A general

approach to inferring errors in
systems code”

Lucas Panjer
October 12, 2006

Problem

• Finding programming errors is difficult
• Defining the rules that describe

programming errors is difficult

Solution

• Attempt to automatically find good
programming error rules

• Detect flaws in belief sets
• Assume that the majority is correct and

minority is likely to be incorrect
• Process code for rules, flag instances

that don’t match the rules

Method

• Define a set of rule templates
• Parse code to find instances that fit the

rules, developing rules dynamically
• Order the output based on relevance
• Evaluate the identified errors

Consistency
• Checker defined by

1. Rule Template
2. Valid slot instances
3. Code actions that imply beliefs
4. Rules for belief combination, contradiction
5. Rules for belief propagation
– Examples:

• function <f> must be checked for failure
• In context <x>, do after <a>

• Develop a belief set as you work through a piece of
code

• When you find a contradiction you mark it as an error

Statistical analysis

• Example:
– <a> MAY be paired with

• Observe a behaviour that
happens frequently

• Mark as a possible error
when it doesn’t happen
(with confidence rating)

• Filter results based on
system specific rules

Implementation

• metal a high level state machine
language for compiler extensions

• creates xgcc extensions
• Tested against OpenBSD, Linux

Usage

• Four case studies

Internal Null Consistency

Check-then-use
– A pointer thought to be null is dereferenced

• Use-then-check
– A pointer is dereferenced the checked to be null

• Redundant checks
– A Pointer known to be (!)null checked to be (!)null

Security Backdoors

• Looks for unsafe dereferencing of pointers in
system code

• Need to define a significant number of routine
and variable names to ignore to suppress false
positives

Inferring Failure

• Looks for unchecked or incorrectly checked
routine failures

• Count number of times the function was
checked in a certain manner

• Count minority as a errors
• Rank

Deriving Temporal Rules
• Freed memory should not be used
• If a function arg is not used after the call,

programmer may believe it is deallocated
– Check all function argument pairs where function

contains a dealloc function “free”, “dealloc”, etc
– Collect stats on number of times checked vs failed

• Linux kernel checking found 23 free errors 11
false positives

Contributions

• Finds bugs without knowing the correctness
rules of the system.

• Previous work manually specified rules to
check against a system. This work improves
by:
– Templating the rules (Consistency)
– Automatically finding rules (Statistical)

• Found lots of errors in real systems code.
Resulted in many kernel patches.

Positive
• Lets the rules be highly targeted to the code

in question
• Automation far superior to human code

review for error cases
• Could translate easily into error checking in

compilers
• Allow domain specific knowledge to be

applied at a compiler level.
• Allows checking of non-runnable code

(drivers)

Negative

• Must know what classes of errors to check
• Need to write compiler extensions
• Relatively high false positive rate
• Often need to add domain specific knowledge

to suppress false positives and assist ranking
algorithms

• Previous work has impacted current study

